

Products of Great Value

Planetary Gearboxes for Servomotors **Servoplan**

Content

- 03 Highly Accurate Gears
- 04 Wide Range of Servogearboxes
- One-stage Planetary Gearbox
- 08 Two-stage Planetary Gearbox
- 10 Gearbox Output Shaft
- 12 Configuration and Selection
- Order No. and Quotation Request
- 14 The ZF Group

The expert for the Industry!

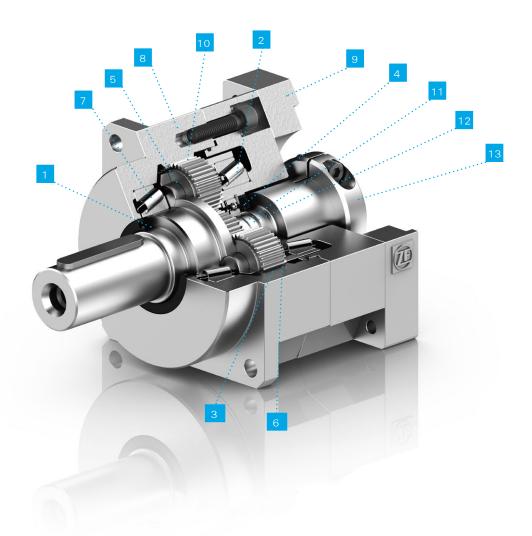
Our enthusiasm for innovative products and processes and our uncompromising pursuit of quality have made us a global leader in driveline and chassis technology. We are contributing towards a sustainable future by producing advanced technology solutions with the goal of improving mobility, increasing the efficiency of our products and systems, and conserving resources. Our customers in the automotive and industrial sectors welcome our determined focus on products and services, which provide great customer value.

Low-play Gearing for Exact Positioning

Precise, dynamic, and even robust and compact represent the outstanding characteristics which are required for servogearboxes in industrial automation. Servoplan PG perfectly meets these requirements.

The Servoplan planetary gearbox series has been designed for direct mounting onto servomotors. The available wide range of sizes and the use of a modular system allows the application in almost any field of automation.

The combination of servomotors with Servoplan planetary gearboxes constitutes a coaxial drive unit. The servomotor output shaft is connected to the sun gear of the gearbox by using a clamping coupling. The sun gear drives three planetary gears inside the planetary carrier, which rotate inside the internal ring gear.


Since the power is distributed to three planetary gears, thereby distributing the forces evenly, this allows a very compact design with high power density.

Planetary gearsets for automation technology can be used in many applications. 1 and 2-stage servo drives with Servoplan servogearboxes are applied wherever highly dynamic and exact positioning is required. Target output torques of 25 to 3 000 Nm are possible with different model sizes. Planetary gearsets for servomotors are used for packaging technology, in shaping technology, as well as generally for machines and facilities.

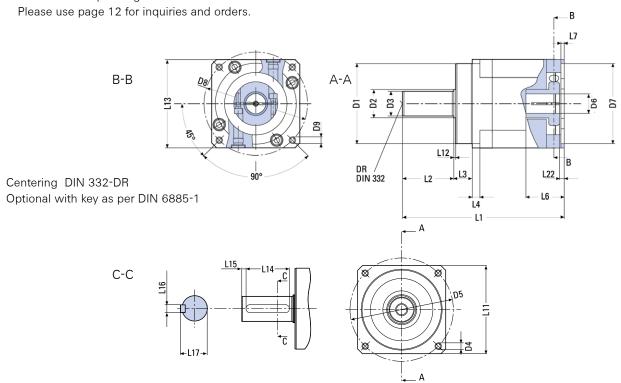
Servoplan servogearboxes are working in a highly precise manner, with great dynamics, and guarantee exact and accurate reproducibility. Machinery energy costs are decreasing thanks to the servogearboxes' high level of efficiency.

Machinery featuring such equipment is operated in a maintenance-free manner and thus secures stable production processes. Wide range. The servogearboxes can be used in almost all areas of automation technology thanks to their modular design.

- 1 The robust output shaft shoulder allows the highest possible axial loads
- 2 High radial forces and an extreme tilt resistance through large-dimensioned taper roller bearings
- A high positional accuracy is achieved by using ground and highly accurate gears
- 4 High quality Viton shaft seals ensure a permanent and save sealing
- 5 High torsional rigidity
- 6 Low running noise thanks to an optimized gear tooth shape
- 7 Compact design by using separated output bearings
- A special galvanic surface treatment makes the housing environmentally resistant, even under the most adverse conditions
- 9 Hermetically sealed housing by using robust sealed screws
- Special surface treatment of the ring gear in order to optimize the lubrication supply of the teething
- High acceleration torques permissible by using gearbox internal interlocking power transmission
- 12 Low gearbox temperatures and minimum power loss by using smallest possible seal diameters
- Backlash-free power transmission by using clamping coupling for motor shaft connection

One-stage Planetary Gearbox

		i	PG	PG	PG	PG	PG	PG
			25/1	100/1	200/1	500/1	1200/1	3000/1
Nominal output torque	T _{2N} [Nm]	3 4	- 25	- 85	120 170	280 420	720 1 020	1 800 2 500
Also applicable for		5	25 25	100	200	500	1 200	3 000
S1 operation		7	25	85	170	420	1 020	2 500
		10	20	60	120	280	720	1 800
Emergency stop torque 1)	T _{2Not} [Nm]	3	-	-	400	840	2 160	5 400
		4	100	280	560	1 260	3 060	7 500
		5 7	100 80	330 280	660 560	1 500 1 260	3 600 3 060	9 000 7 500
		10	80	200	400	840	2 160	5 400
Max. acceleration torque 2)	T _{2B} [Nm]	3	-	-	220	560	1 440	3 000
·	ZB - 3	4	50	170	340	840	2 040	5 000
		5	50	200	400	1 000	2 400	6 000
		7 10	50 40	170 110	340 220	840 560	2 040 1 440	5 000 3 000
			40	-				
Max. input speed 5)	n _{1Max} [rpm]	3 4	5 000	5 000	4 000 4 000	3 200 3 200	2 500 2 500	2 000 2 000
		5	6 300	6 300	5 000	4 000	3 200	2 500
		7	8 000	8 000	6 300	5 000	4 000	3 000
		10	10 000	10 000	8 000	6 300	5 000	3 500
Nominal input speed	n _{1N} [rpm]	3	-	-	2 300	1 800	1 300	800
		4	3 000	3 000	2 500	2 000	1 500	1 000
		5	4 000	4 000	3 000	2 500	2 000	1 200
		7 10	5 000 6 000	5 000 6 000	4 000 5 000	3 000 4 000	2 500 3 000	1 500 2 000
Backlash standard	[arcmin]		≤ 6	<u> </u>	<u> </u>	≤ 4	<u> </u>	<u>2</u> 333
reduced 3)	[dronnin]		<u>=</u> 3	≤ 3	≤ 2	≤ 2	≤ 2	± + ≤ 2
Torsional rigidity	C _t [Nm/arcmin]		3.5	8.2	24	48	149	340
Moment of inertia	I ₁ [kg cm ²]	3	-	-	2.8	8.2	36	128
	1.0	4	0.16	0.55	2.0	6.75	24.5	97.6
		5	0.16	0.47	1.64	5.54	18.8	76.4
		7	0.15	0.41	1.36	4.59	14.5	59.9
M		10	0.14	0.38 4 500	1.22	10 000	12.3	51.1
Max. axial force	F _A [N]		3 200		7 000		15 000	22 000
Max. radial force 4)	F _R [N]		2 700	3 700	6 700	9 200	14 000	21 000
Lifetime	L _h [h]		> 20 000	> 20 000	> 20 000	> 20 000	> 20 000	> 20 000
Efficiency	ŋ		≥ 97%	≥ 97%	≥ 97%	≥ 97%	≥ 97%	≥ 97%
Weight	m [kg]		1.6	2.9	5.7	11.5	27	62
Operating noise 6)	L _p [dB(A)]		≤ 53	≤ 56	≤ 56	≤ 56	≤ 65	≤ 65
Lubrication	Lifetime lubrication, closed system							
Surface protection	Aluminium, respectively steel, galvanically treated							
Installation position	Any, variable							
Operating temperature	-10 °C to +90°C							
Direction of rotation	same as input							
Degree of protection	IP 65							


Max. 1 000 times during gearbox lifetime. At a maximum of 1 000 cycles per hour. Percentage of the overall running time less than 5% and 1) 2) duration of the impulse under 0.3 sec.

Resultant force at center of output shaft. For cyclic duty only i = 10, n_{an} = 3 000 rpm 4)

⁵⁾

Dimensions [mm]		PG 25/1	PG 100/1	PG 200/1	PG 500/1	PG 1200/1	PG 3000/1
DR		M5	M8	M12	M16	M20	M20
D1 (g6)		60	70	90	130	160	200
D2		20	28	40	45	60	95
D3 (k6)		16	22	32	40	55	85
D4		5.5	6.6	9	11	13	17
D5		68	85	120	165	215	290
D6 * (F7)	min. max.	6 14	14 24	19 32	24 38	32 48	42 60
L1 *		129.5	155.7	193.1	245.6	290	399.5
L2 (+0,5)		28	36	58	82	82	130
L3		20	20	30	30	30	40
L4		7.7	8	10	12.5	22	30
L6 *	min. max.	15 30	23 40	30 50	32 60	45 82	55 110
L7 *		3.5	4.5	5.5	5.3	8	8
L11		62	76	101	141	182	242
L12		2	2	2	3	3	3
L13 *	min.	62	80	106	141	182	242
L14		22	28	50	70	70	110
L15		3	4	4	5	5	7.5
L16		5	6	10	12	16	22
L17		18	24.5	35	43	59	90
L22 *		4.5	7.5	8.5	7.5	9	10
D7 / D 8 / D9	Adaptations available for all common servomotors, dimensions are variable.						

* Dimensions depending on motor

Two-stage Planetary Gearbox

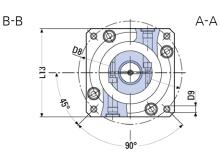
		i	PG 25/2	PG 100/2	PG 200/2	PG 500/2	PG 1200/2
Nominal output torque	T _{2N} [Nm]	20, 35, 40, 70	25	85	170	420	1 020
Also applicable for	2N [IVIII]	25, 50	25	100	200	500	1 200
S1 operation		100	20	60	120	280	720
Emergency stop torque 1)	T _{2Not} [Nm]	20, 35, 40, 70	100	280	560	1 260	3 060
	21400	25, 50	100	330	660	1 500	3 600
		100	80	200	400	840	2 160
Max. acceleration torque 2)	T _{2B} [Nm]	20, 35, 40, 70	50	170	340	840	2 040
		25, 50 100	50 40	200 110	400 220	1 000 560	2 400 1 440
		20, 25, 35,	6 300	6 300	5 000	4 000	3 200
Max. input speed 5)	n _{1Max} [rpm]	40, 50, 70, 100	10 000	10 000	8 000	6 300	5 000
Nominal input speed	n _{1N} [rpm]	20, 25, 35,	4 000	4 000	3 000	2 500	2 000
		40, 50, 70, 100	6 000	6 000	5 000	4 000	3 000
Backlash standard	[arcmin]		≤ 8	≤ 8	≤ 6	≤ 6	≤ 6
reduced 3)			≤ 6	≤ 6	≤ 4	≤ 4	≤ 4
Torsional rigidity	C _t [Nm/arcmin]		3.5	8.2	24	48	149
Moment of inertia	I ₁ [kg cm ²]	20	0.12	0.47	1.56	5.29	6.95
	·	25	0.12	0.47	1.54	5.25	6.70
		35 40	0.12 0.10	0.47 0.47	1.53 1.44	5.21 4.96	6.53 5.51
		50	0.10	0.47	1.44	4.96	5.45
		70	0.10	0.46	1.44	4.94	5.42
		100	0.10	0.46	1.44	4.94	5.39
Max. axial force	F _A [N]		3 200	4 500	7 000	10 000	15 000
Max. radial force 4)	F _R [N]		2 700	3 700	6 700	9 200	14 000
Lifetime	L _h [h]		> 20 000	> 20 000	> 20 000	> 20 000	> 20 000
Efficiency	ŋ		≥ 94%	≥ 94%	≥ 94%	≥ 94%	≥ 94%
Weight	m [kg]		2.2	3.8	7.5	15	35
Operating noise 6)	L _p [dB(A)]		≤ 49	≤ 51	≤ 55	≤ 55	≤ 63
Lubrication	Lifetime lubrication, closed system						
Surface protection	Aluminium, respectively steel, galvanically treated						
Installation position	Any, variable						
Operating temperature	-10 °C to +90°C						
Direction of rotation	same as input						
Degree of protection	IP 65						

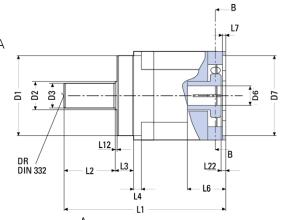
Max. 1 000 times during gearbox lifetime.

At a maximum of 1 000 cycles per hour. Percentage of the overall running time less than 5% and duration of the impulse under 0.3 sec.

Resultant force at center of output shaft. For cyclic duty only 4)

⁵⁾


i = 100, $n_{an} = 3000$ rpm

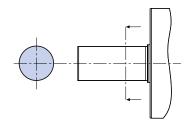

Dimensions [mm]		PG 25/2	PG 100/2	PG 200/2	PG 500/2	PG 1200/2
DR		M5	M8	M12	M16	M20
D1 (g6)		60	70	90	130	160
D2		20	28	40	45	60
D3 (k6)		16	22	32	40	55
D4		5.5	6.6	9	11	13
D5		68	85	120	165	215
D6 * (F7)	min. max.	6 14	11 24	14 32	19 38	19 38
L1 *		153	182.2	236	296	335.2
L2 (+0,5)		28	36	58	82	82
L3		20	20	30	30	30
L4		7.7	8	10	12.5	22
L6 *	min. max.	15 30	23 40	30 50	32 60	45 82
L7 *		3.5	4.5	5.5	5.3	8
L11		62	76	101	141	182
L12		2	2	2	3	3
L13 *	min.	62	80	106	141	182
L14		22	28	50	70	70
L15		3	4	4	5	5
L16		5	6	10	12	16
L17		18	24.5	35	43	59
L22 *		4.5	7.5	8.5	7.5	9

D7 / D 8 / D9

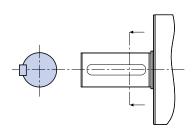
Adaptations available for all common servomotors, dimensions are variable.


* Dimensions depending on motor Please use page 12 for inquiries and orders.

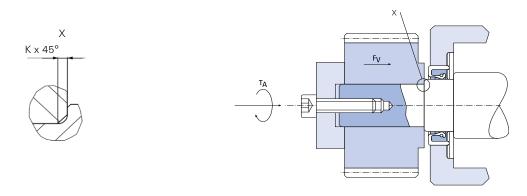
Centering DIN 332-DR Optional with key as per DIN 6885-1



Gearbox Output Shaft


The gearbox output shaft is available in the following designs:

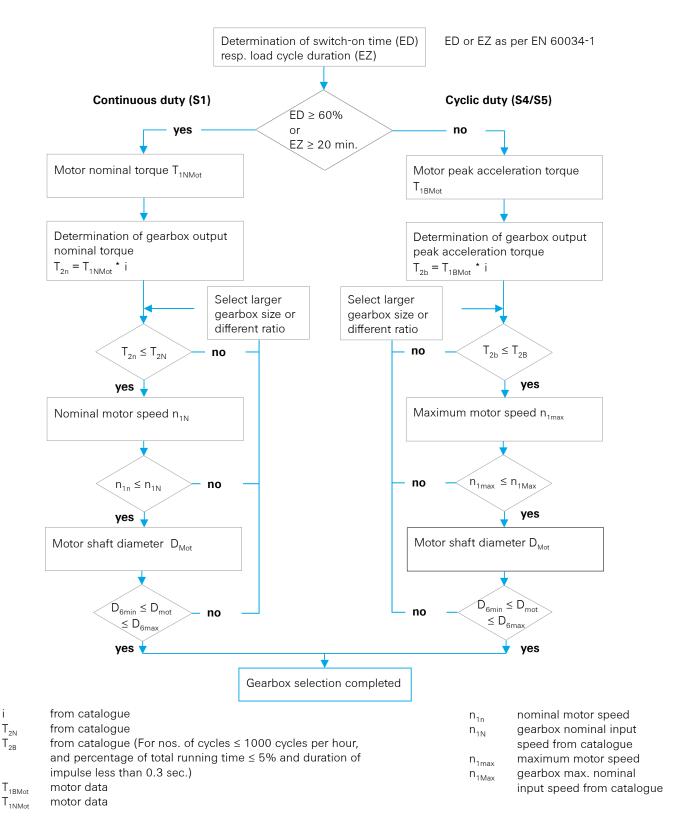
Plain output shaft (standard) for shrunk, backlash-free shaft-hub connections. This allows lower levels of running (operating) noise. We recommend the use of output shafts with shrunk shaft-hub connections.



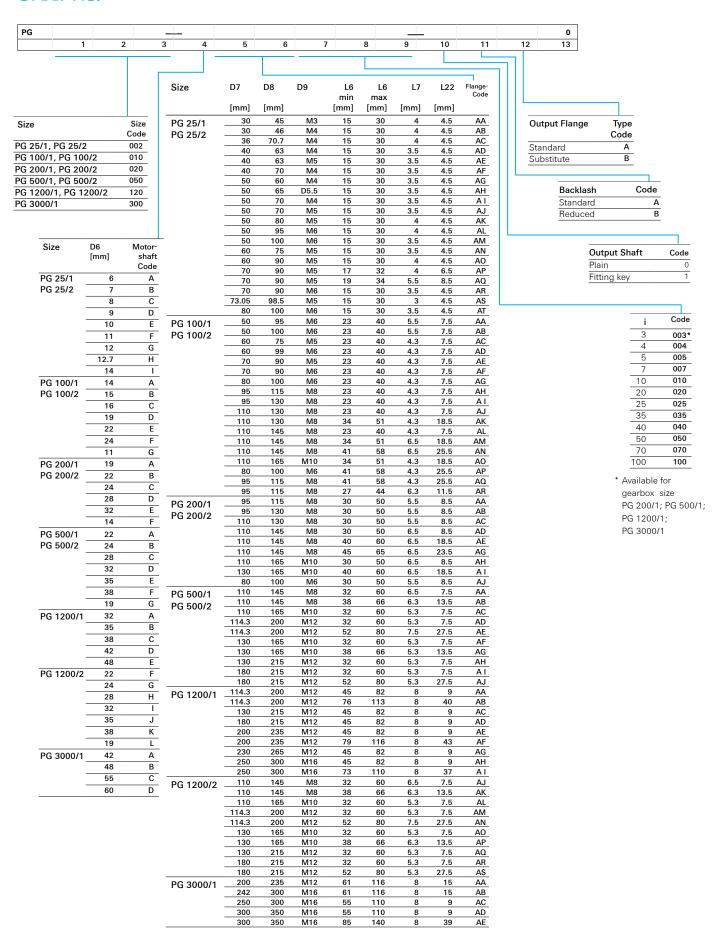
Alternatively available:

Output shaft with key as per DIN 6885-1 for keyed shaft-hub connections. This type of connection is suitable for constant direction, where applications, requirements are not as stringent. This connection type requires additional axial fixing of the hub. A centering bore with thread is provided on the face end of the gearbox output shaft for this purpose (as per DIN 332-DR).

		PG 25/1 25/2	PG 100/1 100/2	PG 200/1 200/2	PG 500/1 500/2	PG 1200/1 1200/2	PG 3000/1
Thread	'	M5	M8	M12	M16	M20	M20
T _A	[Nm]	5.5	23	79	130	260	260
F _V (= Pretensioning Force)	[kN]	6.5	17	40	50	80	80
K min.	[mm]	0.8	1.4	1.4	0.8	0.8	1.4
K max.	[mm]	1.0	1.6	1.6	1.0	1.0	1.6



The connecting part on the gearbox output shaft must have a chamfer "K" (see table) on the contact pattern to the gearbox.


Configuration and Selection

Fast gearbox selection

The quickest and most reliable method, to determine the appropriate gearbox size for a specific application, is a comparison of motor peak torque with gearbox data. Applications are differentiated based on norm EN 60034-1 as to continuous duty (S1) or intermittent cyclic duty (S4/S5). For intermittent cyclic duties the maximum motor acceleration torque is relevant, whereas for continuous duties motor nominal torque is used. In case the motor peak torque exceeds the permitted gearbox values, a calculation based on the actual application specific torques is required.

Order No.

Quotation Request?

c1 	s1—+ +
- b2 -	
b1	-
	0
	b2

Technical change without notice.

For studies, please request installation drawings; only the data contained therein is binding.

Excellently networked worldwide

ZF offers you a comprehensive and attractive range of products and services to ensure mobility anywhere, at any time. Proximity to the customer is an essential element of the corporate performance.

The quality of innovative transmission systems is also a question of experience. For many decades, ZF transmissions have been a major impetus for on and off-road driving and technological progress.

ZF provides comprehensive system solutions all from a single source. The transmission components are perfectly harmonized with one another. The range of available power/ performance is, in each case, tailored to the specific demands of the market and manufacturers.

The result: Every ZF transmission system is a brand name product known for its reliability around the world.

Around the world, around the clock: ZF's service specialists are available anywhere and at any time.

The ZF Group

Shaping the future responsibly

Our enthusiasm for innovative products and processes and our uncompromising pursuit of quality have made us a global leader in driveline and chassis technology. We are contributing towards a sustainable future by producing advanced technology solutions with the goal of improving mobility, increasing the efficiency of our products and systems, and conserving resources.

Our customers in the automotive and industrial sectors welcome our determined focus on products and services, which provide great customer value. Improvements in energy efficiency, cost-effectiveness, dynamics, safety, and comfort are key to our work. Simultaneously, we are aiming for continuous improvement in our business processes and the services we provide. As a globally active company, we react quickly and flexibly to changing regional market demands with the goal of always providing a competitive price/performance ratio.

Our independence and financial security form the basis of our long-term business success. Our profitability allows us to make the necessary investments in new products, technologies, and markets thus securing the future of our company on behalf of our customers, market affiliates, employees, and the owners of ZF.

Our tradition and values strengthen our managerial decisions. Together, they are both an obligation and an incentive to maintain a reliable and respectful relationship with customers, market affiliates, and employees. Our worldwide compliance organization ensures that locally applicable laws and regulations are adhered to. We accept our responsibility towards society and will protect the environment at all of our locations.

Our employees worldwide recognize us as a fair employer, focusing on the future and offering attractive career prospects. We value the varied cultural backgrounds of our employees, their competencies, and their diligence and motivation. Their goal-oriented dedication to ZF, beyond the borders of their own field of work and location, shapes our company culture and is the key to our success.

ZF Group

Industrial Technology Marine & Special Driveline Technology 88038 Friedrichshafen Germany

Phone +49 7541 77-3610 Fax +49 7541 77-903610 industrial-drives@zf.com

Get to know more about the ZF products for industrial automation

www.zf.com/industrial-drives