CLUTCH SYSTEMS

FOR PASSENGER CARS UP TO 1,000 Nm
INNOVATIVE AND FIT FOR THE FUTURE. Millions of people around the entire world are driving with car driveline technology from ZF – today and in the future. The products are designed for efficiency and are simultaneously setting standards when it comes to comfort and driving dynamics. Vehicles equipped with ZF technology successfully walk the challenging line between the need to shape individual mobility while also doing everything possible to preserve the environment and resources. It is impossible to imagine automobiles of the future without ZF driveline technology because, with its modern and reliable components, ZF is also paving the way for many trends, such as electrification of the driveline. This culture of innovation as well as the ability to produce components of the highest quality has made ZF a valuable partner in the international automotive industry.
The demands placed on suppliers in the automotive sector are changing dramatically. Increasingly, suppliers are being called upon to integrate components into complex systems—a development task that can only succeed on the basis of close partnerships with vehicle manufacturers. The future will bring continued demands for reduced fuel consumption, emissions, weight and installation space, along with enhanced comfort, safety, and driving dynamics. To meet these goals, innovative solutions and new products are essential.

ZF has taken responsibility here, demonstrating expertise in generating comprehensive solutions with its integrated powertrain systems. In doing so, it consistently pursues a systems approach in developing and manufacturing new products and technologies that represent real advances. ZF provides overall solutions that meet the demands of overall systems.

One example: As a powertrain specialist and manufacturer of electric drives, ZF can also provide superior integration for the full spectrum of hybrid powertrain designs and thus offer production-ready solutions that are already reducing fuel consumption and emissions for the vehicles of tomorrow.

Clutch System
A complete clutch system generally consists of a flywheel or dual mass flywheel, clutch disc, clutch cover, releaser, and the clutch actuator. Among the numerous criteria used to determine clutch size and clamp load configuration, maximum engine torque and the resulting friction energy are especially significant.

The greater the clamp load, the smaller the friction radius can be. The diameter should be as small as possible, because it greatly affects clutch weight and cost. But the clutch disc also has to be large enough to handle thermal loads and facing wear.

Performance — comfort — environmental protection. Powertrain components and systems for passenger vehicles and LCV, developed and delivered by ZF, meet the widespread challenges of the highly complex interface between engine and transmission.

The greater the clamp load, the smaller the friction radius can be. The diameter should be as small as possible, because it greatly affects clutch weight and cost. But the clutch disc also has to be large enough to handle thermal loads and facing wear.

Powertrain Components and Systems for Passenger Cars and Light Commercial Vehicles
THE CLUTCH SYSTEM –
CUTTING-EDGE POWER TRANSMISSION

The task:
The technical demands placed on modern clutch systems are many and varied. They include rapid and reliable control of torque transfer, ergonomic operation, maximum service life with no loss in comfort, constant pedal forces, vibrational damping, and minimum installation size.

ZF clutch systems for manual transmissions consist of components that have proven themselves millions of times and that meet the highest standards in all categories.

CLUTCH COVERS –
RELIABLE TORQUE TRANSFER

The technology:
The clutch cover transmits engine torque via the clutch disc to the transmission input shaft. The clutch cover is bolted securely to the engine flywheel and consists essentially of a metal housing and a diaphragm spring with integrated actuation levers. This spring presses the axially displaceable pressure plate against the clutch disc and the flywheel when the clutch is engaged.

Its characteristic force curve determines the actuation forces needed to release the clutch. Vibrations, torque, and friction-induced heat – the clutch is subjected to some of the highest levels of stress in the powertrain. The spring must perform reliably after many thousands of shifts, even when the inevitable systems-based wear on the clutch facings in every vehicle alters the load/travel configuration.
The task: Although clutch facings have undergone substantial improvement in terms of quality and service life, they are still subject to normal wear, even if the vehicle is operated with care. Reduced facing thickness considerably influences the forces within the clutch system. Release and clamp loads rise, and thus the necessary pedal forces as well. XTend® is the ideal solution to counter wear and the associated negative effects on the powertrain. XTend® clutch covers are suitable for all vehicles with high mileage and clutch loads.

The technology: XTend®, the clutch cover with automatic wear compensation, decouples facing wear from the movement of the diaphragm spring. The compensation mechanism constantly registers the reduction in facing thickness, and securely offsets this distance by rotating an adjustment ring. This keeps the force ratios constant, and extends the service life because the facings can accommodate additional wear. Another advantage of XTend® lies in its design: It reduces the axial dimensions of the clutch system needed to accommodate normal facing wear.

BENEFITS
- Constant pedal forces throughout the entire service life
- Flexible adjustment to individual vehicle requirements
- Resistance to extreme temperatures, dirt, and aging
- Smaller axial dimensions
- Easy to install and service

XTEND® – CLUTCH COVER WITH AUTOMATIC WEAR COMPENSATION

CLUTCH IN NEW CONDITION

CLEARANCE ADJUSTMENT

PRINCIPLE OF WEAR COMPENSATION

1. Adjuster ring
2. Toothed slide
3. Toothed disc
4. Retainer spring
5. Stopper
6. Pressure plate

When wear occurs, the clutch cover moves toward the flywheel.

The clutch has compensated for the wear and the system is reset to its initial force and path settings.
The task:
Ignition-induced irregularities in rotational speed and rapid load alterations generate vibrations in the powertrain, which in turn cause disturbing noises in the vehicle body and unpleasant rattling in the transmission. Modern engines are featuring smaller displacements and supercharging (down-sizing) in order to reduce fuel consumption. These engines generate high levels of torque at low rpm levels (down-speeding). This constellation of engine characteristics leads to an increase in torsional vibrations. Yet drivers continue to demand higher performance from their damping systems.

The technology:
The torsional damper integrated in the clutch disc is the main element for adjusting torsional rotation properties throughout the powertrain, from the combustion engine to the wheels. This effective vibrational damping system consists of a friction unit and spring sets for both driving and idling. Coil springs positioned in windows allow a limited degree of rotation between the crankshaft and the transmission input shaft. Torsional dampers are individually tuned because each engine/transmission aggregate has its own characteristics. The resulting superior spring and damping characteristics generate outstanding decoupling qualities.

Benefits
- Complex individual characteristics
- Compact construction
- Low inertia
- Modular design

Clutch disc with torsional damper
The torsional dampers are tuned for the characteristics of each vehicle model. Thanks to multistage main dampers and extra preliminary dampers, engine vibrations are effectively minimized both when idling and driving.

Vibrational damping in a torsional damper
Torque and angular travel

Challenge: tribological characteristics
The clutch facing is subject to high frictional load during clutch engagement. The frictional load particularly occurs during starting but also during normal driving operation. Temperatures of up to 450°C may develop at times. Even under such extreme conditions, the clutch facing ensures a sufficiently high frictional coefficient to prevent fading and slipping of the clutch and, as a result, stranding of the vehicle. In addition to the stable friction coefficient, the clutch facing offers high wear resistance.

Challenge: mechanical characteristics
Due to the high rotational speed and the acceleration of a combustion engine, the clutch facing requires very good mechanical characteristics. Strong acceleration leads to an accelerating force which results in high tensile shear in rotation direction. High rotational speed leads to high radial force which results in high tractive forces in radial direction. The minimum burst strength of the clutch facing is correspondingly high. This is still the case when the facing has been partly pre-damaged by thermal load. The clutch facing is still able to bear high pressure as the diaphragm spring presses it strongly against the engine flywheel via the pressure plate during clutch engagement.

Challenge: heat dissipation thanks to high thermal conductivity
The clutch facing requires the highest possible heat conductivity to quickly dissipate friction-induced heat to the neighboring metal parts, thereby avoiding thermal damage of the facing.

Challenge: comfort
The friction facings allow fine dosing of the engine torque during the starting phase which, in combination with the cushion springs, make smooth starting possible. Particularly unpleasant clutch grab during starting (vibrations in the range of 10Hz) is prevented.

Challenge: material composition
ZF clutch facings consist of a number of well matched materials: Yarns of glass or polymer fibers as well as copper or brass wire, embedded in a mixture of resin, rubber, and filler materials. They are lead-free and are manufactured in environmentally friendly processes. They comply with EU regulations for vehicle recycling.

ZF Clutch Facings – All-Rounder Under the Most Extreme Conditions

Close-up view: Torsional damping at constant vehicle speed

Clutch facing is subject to high frictional load during clutch engagement. The frictional load particularly occurs during starting but also during normal driving operation. Temperatures of up to 450°C may develop at times. Even under such extreme conditions, the clutch facing ensures a sufficiently high frictional coefficient to prevent fading and slipping of the clutch and, as a result, stranding of the vehicle. In addition to the stable friction coefficient, the clutch facing offers high wear resistance.

Due to the high rotational speed and the acceleration of a combustion engine, the clutch facing requires very good mechanical characteristics. Strong acceleration leads to an accelerating force which results in high tensile shear in rotation direction. High rotational speed leads to high radial force which results in high tractive forces in radial direction. The minimum burst strength of the clutch facing is correspondingly high. This is still the case when the facing has been partly pre-damaged by thermal load. The clutch facing is still able to bear high pressure as the diaphragm spring presses it strongly against the engine flywheel via the pressure plate during clutch engagement.

The friction facings allow fine dosing of the engine torque during the starting phase which, in combination with the cushion springs, make smooth starting possible. Particularly unpleasant clutch grab during starting (vibrations in the range of 10Hz) is prevented.

ZF clutch facings consist of a number of well matched materials: Yarns of glass or polymer fibers as well as copper or brass wire, embedded in a mixture of resin, rubber, and filler materials. They are lead-free and are manufactured in environmentally friendly processes. They comply with EU regulations for vehicle recycling.
HYBRID CLUTCH – INTEGRATION EXPERTISE

The task:
For many hybrid drives it is necessary to install an additional separable clutch in addition to the electric motor in the existing installation space. This clutch enables all conceivable hybrid functions such as electric driving, especially for electric motors of parallel hybrid drivelines in cars. Hybrid clutches have to be adapted to typical hybrid requirements.

The technology:
As a systems provider, ZF can supply hybrid modules which have the clutch completely integrated into the electric motor. For these systems, the electric motor components perform additional clutch functions, and vice versa, in order to meet installation space requirements. Hybrid clutches are adapted in the best possible way to meet concrete requirements. They build on standard-series production of manual transmissions, but also provide additional functions.

BENEFITS
- Dramatic reduction in fuel consumption and emissions
- Very fast and quiet engine start and therefore comfortable start-stop operation
- Recuperation of electric energy from braking
- Improved driving dynamics thanks to power boost for combustion engine during acceleration
- Purely electric operation (no emissions) by separating the combustion engine from the driveline
- Hybrid drive

With the dynamic starter clutch, the rotating electric motor propels the stationary combustion engine to its operating speed by engaging the clutch in less than 0.3 second, without undesirable side effects. This clutch can also transmit extremely high torque levels.

MRU – MECHANICAL RELEASE UNIT

The task:
The mechanical release unit connects the hydraulic clutch actuation system with the diaphragm spring on the clutch cover assembly. The MRU must ensure absolute noiselessness and uncompromising reliability over its entire service life. In addition, optimized system rigidity is required to impart a subjectively “good feel” for the pressure point to the driver.

For this purpose, ZF offers its customers a unit that minimizes assembly work as only one module needs to be installed. In addition, this solution makes it possible for the customer to resort to a system on which all individual parts have been adapted to each other perfectly with regard to efficiency, robustness, and service life.

The technology:
The mechanical release unit consists of a ready-to-fit component assembly. The first component is the guide sleeve. It is bolted into the bell housing and ensures axial guidance of the clutch release bearing. High requirements regarding surface quality and roundness of this component ensure friction-optimized motion of the clutch release bearing on the guide sleeve. The release lever/release fork transmits the release stroke from the slave cylinder to the clutch release bearing. One side of the release lever is supported on the slave cylinder; the other side is supported on the bell housing via a pin that is pre-installed on the MRU.

The clutch release bearing is the transfer element between the rotating clutch and the stationary actuation system. Optimized synthetic materials for the sliding sleeve and a friction-optimized interface between the thrust ring and the diaphragm spring minimize the increase in hysteresis over the entire service life.

The benefits:
- Dramatic reduction in fuel consumption and emissions
- Very fast and quiet engine start and therefore comfortable start-stop operation
- Recuperation of electric energy from braking
- Improved driving dynamics thanks to power boost for combustion engine during acceleration
- Purely electric operation (no emissions) by separating the combustion engine from the driveline

With the dynamic starter clutch, the rotating electric motor propels the stationary combustion engine to its operating speed by engaging the clutch in less than 0.3 second, without undesirable side effects. This clutch can also transmit extremely high torque levels.
CLUTCH RELEASE BEARING

The task:
The clutch release bearing is the transfer element between the rotating clutch and the stationary actuation system. Absolute noiselessness and uncompromising reliability under any kind of operating condition must be ensured over its entire service life. With the clutch release bearing it is possible to compensate for a potential assembly- or tolerance-related offset.

The technology:
The clutch release bearing is part of a modular system in which all components are ideally matched. Special plastics which have been modified with regards to wear, friction, and form stability are used for the sliding sleeve. The inner and outer ring of the clutch release bearing are high-precision, high-strength steel parts. In order to guarantee reliable lubrication of the ball-bearing grooves over the entire service life, only special grease is used. To reduce friction between the diaphragm spring in the pressure plate and the inner ring of the clutch release bearing, a plastic thrust washer can be fitted.

FLEXIBLE CLUTCH RELEASE BEARING

The task:
The flexible clutch release bearing is the transfer element between the rotating clutch and the stationary actuation system. Absolute noiselessness, uncompromising reliability over the entire service life, and optimum elimination of rotational irregularities must be ensured by the precession-inhibitory clutch release bearing. The ever increasing efficiency optimization on modern drivelines results in an increasing susceptibility to vibration phenomena. The flexible clutch release bearing decouples vibrations that originate from the engine and are transmitted to the clutch system, thus reducing driveline vibrations.

The technology:
The flexible clutch release bearing is equipped with a special ball groove which makes it possible to tilt the inner ring relative to the outer ring. By using balls in the clutch release bearing, this system provides a low-friction, dynamic compensation for any diaphragm spring precession. This precession of the clutch release bearing results in a significant reduction of pedal and driveline vibrations, thus increasing comfort for the driver.

CbW (CLUTCH-BY-WIRE) ACTUATOR

The task:
Ever increasing regulations regarding resource-efficient drivelines require new ideas for vehicles with conventional manual transmissions. Clutch-by-wire technology makes it possible to save fuel, reduce CO₂ emissions, and enhance comfort at the same time. A clutch actuator opens and closes the clutch. Combined with integrated control electronics, this allows to open the driveline during rolling operation, to turn off the engine and, thus, to save fuel and reduce CO₂ emissions. If torque is needed again after so-called coasting, the engine is started automatically and the driveline is closed.

The technology:
The clutch-by-wire clutch actuator developed by ZF is equipped with a brushless DC motor and an integrated clutch control unit. This control unit enables to integrate various functions, such as coasting, start & stop, creeping, and stall protection for combustion engines. The clutch-by-wire clutch actuator is a further development of the tried and tested ZF AMT clutch actuators. Both electrohydraulic and electromechanical solutions can be offered. The applied mechanical solutions in the clutch-by-wire clutch actuator provide for high efficiency and low power requirements.

BENEFITS
- Compact design
- Integrated control unit (CCU) at actuator
- Available as electromechanic or electrohydraulic actuator
- Possibility of saving fuel and reducing CO₂ emissions
AUTOMATED MANUAL TRANSMISSION – INTELLIGENT GEAR SHIFTING

The task:
To best meet demands on the part of drivers, the automobile industry, and legislators for lower fuel consumption and emissions, it is essential to raise the level of efficiency in the powertrain. Moreover, components from ZF can also be used to automate manual transmissions and thus improve comfort in vehicle categories that cannot have automatic transmissions for reasons of weight, installation space, or cost.

ZF provides the overall system with actuators, TCU, software and shifters from a single source, and can thus assume leadership of the system development process. Complete expertise with the system and its interfaces means that the individual actuation components can be adapted optimally to vehicle designs.

The technology:
In automated manual transmissions, electromechanical or hydraulic actuators take over the clutch and shift actions. In either case, individual driving pleasure is not diminished because drivers can decide whether they want to use the automatic mode or shift manually using switches or levers.

With their optimized shift strategies, automated manual transmissions reduce torque interruption to a minimum. Sensors register and convey all the relevant information to the control system. Using this data, the system calculates the shift points and controls the shift and clutch processes automatically. The technology even intervenes in driving operations to improve safety – such as automatically interrupting the torque flow briefly to counter the risk of skidding. Automation components can also be used in start-stop as well as hybrid applications. Buyers of standard cars are already enjoying greater comfort thanks to ZF components for automated manual transmissions.

BENEFITS
- Full driving comfort – no clutch actuation, no shifting
- Prevents error during shifting
- Lower cost and weight, smaller space claim than automatic transmissions
- Allows manual shifting and thus individual driving styles
- Separate programs for sportive driving, bad weather conditions or slippery or icy road conditions and trailer use
- Reduced fuel consumption due to electronically optimized shift points and high mechanical efficiency

SYSTEM DARSTELLUNG EINER ELEKTROMECHANISCHEN AUTOMATISIERUNG

MT/AMT COMPARISON

<table>
<thead>
<tr>
<th>Parameters</th>
<th>MT</th>
<th>AT</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel consumption</td>
<td>+/-</td>
<td>++</td>
<td>Fuel consumption reduced by shifting to automatic mode at the optimum point in time</td>
</tr>
<tr>
<td>Emissions</td>
<td>+/-</td>
<td>++</td>
<td>CO₂ emissions lowered by shifting to automatic mode at the optimum point in time</td>
</tr>
<tr>
<td>Costs</td>
<td>++</td>
<td>+</td>
<td>Favorably priced automation alternative compared to other common systems (dual clutch, automatic transmissions)</td>
</tr>
<tr>
<td>Driving comfort</td>
<td>+</td>
<td>++</td>
<td>Driver and passenger comfort markedly increased by shifting to automatic mode at the optimum point in time</td>
</tr>
</tbody>
</table>
The task:
Passenger car engines with optimized fuel-consumption levels are becoming ever more powerful despite smaller displacements and fewer cylinders. To drive on less fuel, the engine’s usable rpm range has been shifted toward the idling range. This has led to a marked rise in rotational irregularities in the combustion engine. To continue to provide rattle-free driving and to protect the powertrain from harmful vibrations, effective vibrational damping is needed. The highly effective DMF models from ZF provide optimum torsional damping.

The technology:
The dual mass flywheel is installed between the engine and the transmission along with the clutch cover and clutch disc. The DMF and the MTD both consist of a primary and a secondary mass, which are connected by a lubricated spring set. The primary mass is bolted to the crankshaft and carries the starter ring gear. The primary and secondary masses are mounted such that they can rotate independently. The spring set has a modular design, which allows characteristic curves to be varied and optimized. It consists of compression springs as well as compression spring guide elements which are made of high-strength plastic.

The properties of the polyamide plastics are selected by application-specific compounding. All DMFs from ZF have multi-stage torsional characteristic curves. This is achieved by combining different quantities of compression springs with different rigidities. The soft initial stage ensures excellent engine starting and stopping behavior. Subsequent harder stages provide effective torsional vibration decoupling and sufficient overload protection at normal driving speeds.

A further improvement in torsional vibration damping is achieved by a DMF with a double-row spring set. The second spring set is located radially within and downstream from the first, which substantially decreases the DMF’s torsional rigidity. The inner damper’s compression springs operate with low friction at both high engine rpm and torque levels. A DMF with an rpm-adaptable damper provides excellent torsional vibration decoupling. The rpm-adaptable damper vibrates inversely to the rotational irregularity remaining from the DMF spring set, which nearly eliminates residual rotary vibration amplitudes. This additional vibrational damping enables vehicles to be driven at high loads without annoying noises from idling speeds on up.

BENEFITS
- Less noise
- Easier to shift gears
- Outstanding vibration damping throughout the entire rpm range
- Easily adjusted to vehicle designs
- Smooth start/stop performance
- Long service life
- Smaller dimensions
- Pull and push-type clutches possible
- Reduced fuel consumption because vehicles can be operated at lower rpm levels
DMF AT A GLANCE

VIBRATIONAL DECOUPLING

The flywheel is divided into a primary and a secondary mass. Together with the spring set, it effectively isolates torsional vibrations.

For a torsional damper in the clutch disc, the resonance rpm lies in the lower engine speed range, but for a dual mass flywheel it lies well below the engine idling speed.

A typical DMF characteristic curve. It starts with a soft initial stage, followed by considerably harder stages. The first stage features a minimum degree of stiffness in order to keep the DMF natural frequency low.

COMPARISON OF CLUTCH DISC VS. DMF

The flywheel is divided into a primary and a secondary mass. Together with the spring set, it effectively isolates torsional vibrations.

COMPARISON OF VIBRATION DAMPING

Clutch disc with torsional damper

Dual mass flywheel

Transmission range [%]

Order

Engine speed [rpm]

Angular accel. [rad/S²]

Torsional deformation

Driving range

Twisting angle
Our enthusiasm for innovative products and processes and our uncompromising pursuit of quality have made us a global leader in driveline and chassis as well as active and passive safety technology. We are contributing towards a sustainable future by producing advanced technology solutions with the goal of improving mobility, increasing the efficiency of our products and systems, and conserving resources.

Our customers in the automotive and industrial sectors welcome our systematic orientation towards products and services which provide great customer value. Improvements in energy efficiency, cost-effectiveness, dynamics, safety, and comfort are key to our work. Simultaneously, we are aiming for continuous improvement in our business processes and the services we provide. As a globally active company, we react quickly and flexibly to changing regional market demands with the goal of always providing a competitive price/performance ratio.

Our independence and financial security form the basis of our long-term business success. Our profitability enables us to make the necessary investments in new products, technologies, and markets and we thus secure the future of our company on behalf of our customers, market affiliates, employees, and ZF owners.

Our tradition and values strengthen our managerial decisions. Together, they are both an obligation and an incentive to maintain a reliable and respectful relationship with customers, market affiliates, and employees. Our worldwide compliance organization ensures that locally applicable laws and regulations are adhered to. We accept our responsibility towards society and will protect the environment at all of our locations.

Our employees worldwide recognize us as a fair employer, focusing on the future and offering attractive career prospects. We value the varied cultural backgrounds of our employees, their competencies, and their diligence and motivation. Their goal-oriented dedication to ZF, beyond the borders of their own field of work and location, shapes our company culture and is the key to our success.

The ZF Group draws upon an international network of development centers. Each year, ZF invests approximately five percent of its sales in R&D. With success, because innovative products from ZF set the standards for state-of-the-art technology – again and again.

Development work at ZF is organized according to decentralized and corporate functions. The divisions and business units focus on markets and product expertise, ensuring customer-centered, competitive technological product development. Corporate R&D works with a strong emphasis on basic research and theory, and supports the operational development departments in the divisions.

Groundbreaking innovations

Over the past years, this partnership has produced product innovations that have since become benchmarks in the industry: Just some examples are the 8-speed automatic transmission for cars as well as hybrid transmissions and hybrid management for cars and commercial vehicles, or the modular TraxXon transmission system for commercial vehicles. Groundbreaking innovations from ZF are in use today not just in passenger cars and commercial vehicles on the road, but also in all kinds of craft on the water and in the air.

What’s more, the innovative power of ZF is set to increase in the future. Proof of this is already provided by the number of patents pending: A look at the statistics of the German Patent andTrademark Register shows that ZF is among the top ten applicants for patents – at eye level with many large automotive manufacturers. Each year, the research departments successfully complete more than 10,000 projects, covering the full range from basic research to product applications. This high project volume is necessary to ensure mobility in the future. The trend toward hybrid solutions already shows that green drive technology is very complex. The same goes for pure electric drives and lightweight design engineering. Currently, ZF engineers are conducting pioneering work on alternative materials, broader approaches in design and testing, and new production processes.